Induction of potent anti-tumor responses while eliminating systemic side effects via liposome-anchored combinatorial immunotherapy Citation

نویسندگان

  • Kwong
  • Brandon
  • Haipeng Liu
  • Darrell J. Irvine
  • Brandon Kwong
چکیده

Immunostimulatory therapies that activate immune response pathways are of great interest for overcoming the immunosuppression present in advanced tumors. Agonistic anti-CD40 antibodies and CpG oligonucleotides have previously demonstrated potent, synergistic anti-tumor effects, but their clinical use even as monotherapies is hampered by dose-limiting inflammatory toxicity provoked upon systemic exposure. We hypothesized that by anchoring immuno-agonist compounds to lipid nanoparticles we could retain the bio-activity of therapeutics in the local tumor tissue and tumor-draining lymph node, but limit systemic exposure to these potent molecules. We prepared PEGylated liposomes bearing surface-conjugated anti-CD40 and CpG and assessed their therapeutic efficacy and systemic toxicity compared to soluble versions of the same immunoagonists, injected intratumorally in the B16F10 murine model of melanoma. Anti-CD40/CpGliposomes significantly inhibited tumor growth and induced a survival benefit similar to locally injected soluble anti-CD40+CpG. Biodistribution analyses following local delivery showed that the liposomal carriers successfully sequestered anti-CD40 and CpG in vivo, reducing leakage into systemic circulation while allowing draining to the tumor-proximal lymph node. Contrary to locally administered soluble immunotherapy, anti-CD40/CpG liposomes did not elicit significant increases in serum levels of ALT enzyme, systemic inflammatory cytokines, or overall weight loss, confirming that off-target inflammatory effects had been minimized. The development of a delivery strategy capable of inducing robust anti-tumor responses concurrent with minimal systemic side effects is crucial for the continued progress of potent immunotherapies toward widespread clinical translation. © 2011 Elsevier Ltd. All rights reserved. *Correspondence should be addressed to D.J. Irvine. Department of Biological Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA. Tel: 1-617-452-4174; Fax: 1-617-452-3293. [email protected]. Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Published as: Biomaterials. 2011 August ; 32(22): 5134–5147. H H M I Athor M anscript H H M I Athor M anscript H H M I Athor M anscript

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induction of potent anti-tumor responses while eliminating systemic side effects via liposome-anchored combinatorial immunotherapy.

Immunostimulatory therapies that activate immune response pathways are of great interest for overcoming the immunosuppression present in advanced tumors. Agonistic anti-CD40 antibodies and CpG oligonucleotides have previously demonstrated potent, synergistic anti-tumor effects, but their clinical use even as monotherapies is hampered by dose-limiting inflammatory toxicity provoked upon systemic...

متن کامل

Microenvironment and Immunology Localized Immunotherapy via Liposome-Anchored Anti- CD137 þ IL-2 Prevents Lethal Toxicity and Elicits Local and Systemic Antitumor Immunity

Immunostimulatory agonists such as anti-CD137 and interleukin (IL)-2 have elicited potent antitumor immune responses in preclinical studies, but their clinical use is limited by inflammatory toxicities that result upon systemic administration. We hypothesized that by rigorously restricting the biodistribution of immunotherapeutic agents to a locally accessible lesion and draining lymph node(s),...

متن کامل

Localized immunotherapy via liposome-anchored Anti-CD137 + IL-2 prevents lethal toxicity and elicits local and systemic antitumor immunity.

Immunostimulatory agonists such as anti-CD137 and interleukin (IL)-2 have elicited potent antitumor immune responses in preclinical studies, but their clinical use is limited by inflammatory toxicities that result upon systemic administration. We hypothesized that by rigorously restricting the biodistribution of immunotherapeutic agents to a locally accessible lesion and draining lymph node(s),...

متن کامل

Listeria Monocytogenes Activated Dendritic Cell Based Vaccine for Prevention of Experimental Tumor in Mice

Background: The use of dendritic cells (DCs) as a cellular adjuvant provides a promis-ing approach in immunotherapy of cancer. It has been demonstrated that Listeria mono-cytogenes activated DCs pulsed ex vivo with tumor antigens trigger a systemic Th1-biased specific immune response and a single dose of this vaccine will cause a consider-able anti tumor immunity. Objective: The present study w...

متن کامل

Systemic delivery of liposome-anchored anti-CD137 and IL2-Fc prevents lethal toxicity and elicits potent antitumor immunity

Many immunostimulatory drugs, such as agonistic antibodies to CD137 and interleukin (IL)-2, generate effective antitumor immune responses in preclinical studies, but demonstrate serious toxicity profiles after systemic administration, which hampers their clinical application. We recently discovered that a combination of antiCD137 with an extended half-life IL-2-Fc fusion protein (lacking Fc rec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011